Profiling of Polar Organic Acids in Mouse Muscle Using Ion Chromatography/Mass Spectrometry

Christopher Petucci^{1,2}, Andrew V. Zelenin^{1,2}, Jeffrey A. Culver^{1,2}, Meghan Gabriel¹, Ken Kirkbride³, Terri T. Christison³, and Stephen J. Gardell^{1,2}

IC/MS Instrumentation

Thermo Scientific ICS-5000+ Thermo ICS-5000+ HPIC/Ouantiva

¹Metabolomics Core Facility, Sanford Burnham Prebys Medical Discovery Institute, 6400 Sanger Road, Orlando, FL 32827 ²Southeast Center for Integrated Metabolomics (SECIM), Clinical and Translational Science Institute, 2004 Mowry Road, Gainesville, FL 32610 ³Thermo Fisher Scientific, 1214 Oakmead Parkway, Sunnyvale, CA 94088

Southeast Center for Integrated Metabolomics Clinical and Translational Science Institu UNIVERSITY of FLORIDA

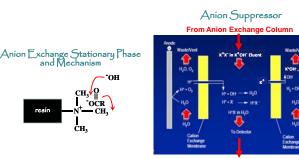
d of ethyl acetat

Overview

- · Ion chromatography (IC) was evaluated to demonstrate its ability to highly retain and separate polar metabolites that are poorly retained and resolved by reversed-phase chromatography.
- Ion chromatography was coupled with mass spectrometry (IC/MS) to quantitate a variety of polar organic acids in mouse muscle.
- The organic acids examined cover several metabolic pathways including divcolvsis, the pentose-phosphate pathway, the TCA cycle, nucleotides. and amino acids

Introduction

- Organic acids (OAs) are crucial metabolites that play a pivotal role in a host of different metabolic and regulatory pathways.
- · We have developed a novel analytical method to quantitate 27 different polar OAs using ion chromatography/triple quadrupole mass spectrometry (IC/MS).
- The method was used to quantitate OA differences in quadriceps muscles from sedentary mice compared to mice that underwent a low intensity, long duration (LILD) or high intensity short duration (HISD) forced treadmill exercise regimen.
- This pilot study has demonstrated that IC/MS is a powerful new tool to separate and quantitate low molecular weight, polar metabolites that are difficult to analyze by other techniques.


Methods

- Frozen quadriceps from mice were lyophilized with subsequent powdering and homogenization of 5 mg of powder in 500 µL of 50:50 acetonitrile/0.3% formic acid using a Precellys Evolution homogenizer.
- A 50 µL aliquot of homogenate, spiked with ¹³C, ²H, or ¹⁵N internal standards, was derivatized with 50 µL of 0.2 M benzylhydroxylamine to stabilize keto-acids
- The sample was extracted with 1 mL of ethyl acetate followed by drying down 900 µL of the organic layer with reconstitution in 100 µL of deionized water for IC/MS analysis.
- Calibration curves, spiked with ¹³C, ²H, or ¹⁵N internal standards, (Cambridge Isotope Laboratories) were prepared the same as tissue samples from 0.1-250 µM or up to 5000 µM for lactic acid.
- A Thermo Scientific ICS-5000 ion chromatography system using a Dionex AS11-HC. 4 µm. 2 x 250 mm anion exchange column was used to separate the OAs using a KOH gradient from 5 mM KOH to 100 mM KOH over 11 min.
- The IC was coupled to a Thermo Scientific Quantiva triple guadrupole mass spectrometer to quantitate the OAs by single reaction monitoring via electrospray ionization in the negative ion mode.

Triple Quadrupole M.S

To Electrospray Mass Spectrometer

- The anion suppressor neutralizes the KOH eluent, protonates carboxylic acids (HX), and removes potassium cations.
- · Hydroxide and potassium ions can contaminate the conductivity detector. Also, potassium salts are not volatile by electrospray ionization.

Results

Precision and Accuracy of Representative Calibrators Over 3 Days

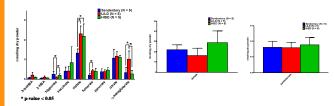
Organic Acid	Nominal Concentration (µM)	Mean Measured Conc. (µM), n = 6	S.D. (n = 6)	% CV	% Accuracy
lactic acid	50	51	2	4	101
	200	201	17	9	100
	500	502	28	6	100
	1000	951	31	3	95
	2000	2022	115	6	101
	5000	5120	369	7	102
pyruvic acid	2.5	2.5	0.2	6.2	98
	10	9.9	0.6	5.9	99
	25	25.3	0.9	3.7	101
	50	49	2	4	98
	100	104	7	6	104
	250	249	15	6	99
fumaric acid	0.25	0.23	0.03	12.05	92
	2.5	2.5	0.2	7.2	100
	10	10	1	10	101
	25	26	2	7	104
	50	49	6	11	99
	100	97	11	12	97
	250	247	15	6	99

Recovery, Matrix F ffect, and Freeze/Thaw, Stability of Select Organic Acids in Homogenates of Mouse Quadriceps

Organic Acid	Recovery (%)	Matrix Effect (%)
lactic acid	37	11
pyruvic acid	39	37
malic acid	28	30
fumaric acid	78	21

3-day Freeze/Thaw Stability of Quadriceps Homogenate

n = 3: recoverie


			<i>.</i>				
Organic Acid	Day 1 (µM)	S.D.	% CV	Day 3 (µM)	S.D.	% CV	% Stability
lactic acid	201.1	0.1	0.06	209	15	7	104
pyruvic acid	4.0	0.3	6	3.4	0.5	16	85
malic acid	15	1	9	14	2	14	93
fumaric acid	2.0	0.2	9	1.9	0.2	10	98
n - 3							

IC/MS of Organic Acids in Mouse Quadriceps

3-hydroxybutyric acid	malic ac
lactic acid	al oxal
pantothenic acid	di funa
3-hydroxyisobutyric acid	se Para
2-hydroxybutyric acid	2 20
hippuric acid	
hydroxyglutarie acid	al 2-k
succinic acid	00 2-k
2 4 6 8 50 52 14 Time (min)	0

1	oxalie acid
	fumaric acid
1	pgnivic acid
2	orotic acid
	citric acid
1	2-ketoisovaleric
1	2-ketoglutarie acid
-	

Differential Profiles of Organic Acids in the Quadriceps of Exercised Mice by C/MS

Conclusions and Future Directions

- Ion chromatography is a complementary separation method to HPLC (i.e. ion-pairing and HILIC) to retain and quantitate polar, water soluble organic acids by mass spectrometry.
- Next Steps: Develop IC/MS methods for nucleotides, glycolysis, and pentose phosphate pathway intermediates.

Acknowledgements

National Institutes of Health (U24 DK097209)

